题意:对于一个序列,若存在 i<j , a[j]>a[j] 则是一组逆序对;若这个序列是升序的,则逆序对个数为0;若是降序的,逆序对个数最大。
分而治之模板:
Divide and Conquer Paradigm:
1) divide into smaller suibproblems;
2) conquer via recursive calls;
3) combine solutions of subproblems into one for the original problem.
举例:
归并排序算法:
归并排序是稳定算法。
如何用merge sort来求逆序对的思路:
递归写法:
// C++ program to Count // Inversions in an array // using Merge Sort #include <bits/stdc++.h> using namespace std; int _mergeSort(int arr[], int temp[], int left, int right); int merge(int arr[], int temp[], int left, int mid, int right); /* This function sorts the input array and returns the number of inversions in the array */ int mergeSort(int arr[], int array_size) { //归并排序接口 int temp[array_size]; return _mergeSort(arr, temp, 0, array_size - 1); } /* An auxiliary recursive function that sorts the input array and returns the number of inversions in the array. */ int _mergeSort(int arr[], int temp[], int left, int right) { //分-递归 int mid, inv_count = 0; if (right > left) { /* Divide the array into two parts and call _mergeSortAndCountInv() for each of the parts */ mid = (right + left) / 2; /* Inversion count will be sum of inversions in left-part, right-part and number of inversions in merging */ inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid + 1, right); /*Merge the two parts*/ inv_count += merge(arr, temp, left, mid + 1, right); } return inv_count; } /* This funt merges two sorted arrays and returns inversion count in the arrays.*/ int merge(int arr[], int temp[], int left, int mid, int right) { //合并 int i, j, k; int inv_count = 0; i = left; /* i is index for left subarray*/ j = mid; /* j is index for right subarray*/ k = left; /* k is index for resultant merged subarray*/ while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; /* this is tricky -- see above explanation/diagram for merge()*/ inv_count = inv_count + (mid - i); } } /* Copy the remaining elements of left subarray (if there are any) to temp*/ while (i <= mid - 1) temp[k++] = arr[i++]; /* Copy the remaining elements of right subarray (if there are any) to temp*/ while (j <= right) temp[k++] = arr[j++]; /*Copy back the merged elements to original array*/ for (i = left; i <= right; i++) arr[i] = temp[i]; return inv_count; } // Driver code int main() { int arr[] = { 1, 20, 6, 4, 5 }; int n = sizeof(arr)/sizeof(arr[0]); int ans = mergeSort(arr, n); cout << " Number of inversions are " << ans; return 0; }