1. Package
# -*- coding: utf-8 -*-
import os, sys, glob, shutil, json
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import cv2
import numpy as np
from PIL import Image
from tqdm import tqdm, tqdm_notebook
%pylab inline
import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset
2. Data
定义数据集
def __init__(self, loader=default_loader)
:
这个里面一般要初始化一个loader(代码见上面),一个images_path的列表,一个target的列表
def __getitem__(self, index)
:
这里就是在给你一个index的时候,你返回一个图片的tensor和target的tensor,使用了loader方法,经过 归一化,剪裁,类型转化,从图像变成tensor
def __len__(self)
:
return所有数据的个数
这三个综合起来看呢,其实就是输入所有数据的长度,它每次给你返回一个shuffle过的index,以这个方式遍历数据集,通过 getitem(self, index)返回一组你要的(input,target)
class SVHNDataset(Dataset):
def __init__(self, img_path, img_label, transform=None):
self.img_path = img_path
self.img_label = img_label
if transform is not None:
self.transform = transform
else:
self.transform = None
def __getitem__(self, index):
img = Image.open(self.img_path[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
lbl = np.array(self.img_label[index], dtype=np.int)
lbl = list(lbl) + (5 - len(lbl)) * [10]
return img, torch.from_numpy(np.array(lbl[:5]))
def __len__(self):
return len(self.img_path)
# 训练集
# glob.glob(): 匹配符合条件的所有文件,并将其以list的形式返回
# train_path: ['./data/mchar_train/000000.png',...]
train_path = glob.glob(`'./data/mchar_train/*.png'`)
train_path.sort()
train_json = json.load(open(`'./data/mchar_train.json'`))
train_label = [train_json[x]['label'] for x in train_json]
print(len(train_path), len(train_label))
# train data:
# 30000 30000
# 验证集
val_path = glob.glob('../../../dataset/tianchi_SVHN/val/*.png')
val_path.sort()
val_json = json.load(open('../../../dataset/tianchi_SVHN/val.json'))
val_label = [val_json[x]['label'] for x in val_json]
print(len(val_path), len(val_label))
# val data:
# 10000 10000
# 测试集
test_path = glob.glob('./data/mchar_test_a/*.png')
test_path.sort()
test_label = [[1]] * len(test_path)
print(len(test_path), len(test_label))
定义读取数据dataloader
# Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
# DataLoder:对Dataset进行封装,提供批量读取的迭代读取
# 在加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接。
# train
# SVHNDataset参数:img_path, img_label, transform
train_loader = torch.utils.data.DataLoader(
SVHNDataset(train_path, train_label,
transforms.Compose([
# transforms.Compose:
# 传入参数为一个列表,列表中的元素是对数据进行变换的操作
transforms.Resize((64, 128)),
transforms.RandomCrop((60, 120)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])),
batch_size=40,
shuffle=True,
num_workers=10,
)
# val
val_loader = torch.utils.data.DataLoader(
SVHNDataset(val_path, val_label,
transforms.Compose([
transforms.Resize((60, 120)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])),
batch_size=40,
shuffle=False,
num_workers=10,
)
# test
test_loader = torch.utils.data.DataLoader(
SVHNDataset(test_path, test_label,
transforms.Compose([
transforms.Resize((70, 140)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])),
batch_size=40,
shuffle=False,
num_workers=10,
)
DataLoader
Model
class SVHN_Model1(nn.Module):
def __init__(self):
super(SVHN_Model1, self).__init__()
# 使用resnet18网络
model_conv = models.resnet18(pretrained=True)
# 将resnet的平均池化设置为自适应平均池化*
# nn.AdaptiveAvgPool2d(output_size):
# 将输出尺寸指定为output_size,通道数前后不发生变化。
model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
model_conv = nn.Sequential(*list(model_conv.children())[:-1])
self.cnn = model_conv
self.fc1 = nn.Linear(512, 11)
self.fc2 = nn.Linear(512, 11)
self.fc3 = nn.Linear(512, 11)
self.fc4 = nn.Linear(512, 11)
self.fc5 = nn.Linear(512, 11)
def forward(self, img):
feat = self.cnn(img)
# print(feat.shape)
feat = feat.view(feat.shape[0], -1)
c1 = self.fc1(feat)
c2 = self.fc2(feat)
c3 = self.fc3(feat)
c4 = self.fc4(feat)
c5 = self.fc5(feat)
return c1, c2, c3, c4, c5
*nn.AdaptiveAvgPool2d()
- 参数形式为
output_size
或H*W
m = nn.AdaptiveAvgPool2d((3,7))
input = torch.randn(1, 64, 8, 9)
print(m(input))
#torch.Size([1, 64, 3, 7])
m = nn.AdaptiveAvgPool2d(7)
input = torch.randn(1, 64, 10, 9)
print(m(input))
#torch.Size([1, 64, 7, 7])
m = nn.AdaptiveAvgPool2d((None, 3))
input = torch.randn(1, 64, 10, 9)
print(m(input))
# torch.Size([1, 64, 10, 3])
Train()
def train(train_loader, model, criterion, optimizer):
# 切换模型为训练模式
model.train()
train_loss = []
for i, (input, target) in enumerate(train_loader):
if use_cuda:
input = input.cuda()
target = target.cuda()
c0, c1, c2, c3, c4 = model(input)
loss = criterion(c0, target[:, 0]) + \
criterion(c1, target[:, 1]) + \
criterion(c2, target[:, 2]) + \
criterion(c3, target[:, 3]) + \
criterion(c4, target[:, 4])
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss.append(loss.item())
return np.mean(train_loss)
……
Predict()
def predict(test_loader, model, tta=10):
model.eval()
test_pred_tta = None
# TTA 次数
for _ in range(tta):
test_pred = []
with torch.no_grad():
for i, (input, target) in enumerate(test_loader):
if use_cuda:
input = input.cuda()
c0, c1, c2, c3, c4 = model(input)
if use_cuda:
output = np.concatenate([
c0.data.cpu().numpy(),
c1.data.cpu().numpy(),
c2.data.cpu().numpy(),
c3.data.cpu().numpy(),
c4.data.cpu().numpy()], axis=1)
else:
output = np.concatenate([
c0.data.numpy(),
c1.data.numpy(),
c2.data.numpy(),
c3.data.numpy(),
c4.data.numpy()], axis=1)
test_pred.append(output)
test_pred = np.vstack(test_pred)
if test_pred_tta is None:
test_pred_tta = test_pred
else:
test_pred_tta += test_pred
return test_pred_tta
Run
model = SVHN_Model1()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), 0.001)
use_cuda = True
if use_cuda:
model = model.cuda()
best_loss = 1000.0
for epoch in range(10):
train_loss = train(train_loader, model, criterion, optimizer)
val_loss = validate(val_loader, model, criterion)
val_label = [''.join(map(str, x)) for x in val_loader.dataset.img_label]
val_predict_label = predict(val_loader, model, 1)
val_predict_label = np.vstack([
val_predict_label[:, :11].argmax(1),
val_predict_label[:, 11:22].argmax(1),
val_predict_label[:, 22:33].argmax(1),
val_predict_label[:, 33:44].argmax(1),
val_predict_label[:, 44:55].argmax(1),
]).T
val_label_pred = []
for x in val_predict_label:
val_label_pred.append(''.join(map(str, x[x!=10])))
val_char_acc = np.mean(np.array(val_label_pred) == np.array(val_label))
print('Epoch: {0}, Train loss: {1} \t Val loss: {2} \t Val Acc: {3}'.format(epoch, train_loss, val_loss, val_char_acc))
# 记录下验证集精度
if val_loss < best_loss:
best_loss = val_loss
# print('Find better model in Epoch {0}, saving model.'.format(epoch))
torch.save(model.state_dict(), './model.pt')
# 加载保存的最优模型
model.load_state_dict(torch.load('./model.pt'))
test_predict_label = predict(test_loader, model, 1)
print(test_predict_label.shape)
test_label = [''.join(map(str, x)) for x in test_loader.dataset.img_label]
test_predict_label = np.vstack([
test_predict_label[:, :11].argmax(1),
test_predict_label[:, 11:22].argmax(1),
test_predict_label[:, 22:33].argmax(1),
test_predict_label[:, 33:44].argmax(1),
test_predict_label[:, 44:55].argmax(1),
]).T
test_label_pred = []
for x in test_predict_label:
test_label_pred.append(''.join(map(str, x[x!=10])))
- 按照题目要求格式存储预测结果
import pandas as pd
df_submit = pd.read_csv('./data/mchar_sample_submit_A.csv')
df_submit['file_code'] = test_label_pred
df_submit.to_csv('submit.csv', index=None)
代码来源:DataWhale