• 天池CV入门赛SVHN代码分析


    1. Package

    # -*- coding: utf-8 -*-                                                                          
    import os, sys, glob, shutil, json
    os.environ["CUDA_VISIBLE_DEVICES"] = '0'
    
    import cv2
    import numpy as np
    from PIL import Image
    
    from tqdm import tqdm, tqdm_notebook
    
    %pylab inline
    
    import torch
    torch.manual_seed(0)
    torch.backends.cudnn.deterministic = False
    torch.backends.cudnn.benchmark = True
    
    import torchvision.models as models
    import torchvision.transforms as transforms
    import torchvision.datasets as datasets
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torch.autograd import Variable
    from torch.utils.data.dataset import Dataset
    

    2. Data

    定义数据集

    def __init__(self, loader=default_loader):

    这个里面一般要初始化一个loader(代码见上面),一个images_path的列表,一个target的列表

    def __getitem__(self, index):

    这里就是在给你一个index的时候,你返回一个图片的tensor和target的tensor,使用了loader方法,经过 归一化,剪裁,类型转化,从图像变成tensor

    def __len__(self):

    return所有数据的个数

    这三个综合起来看呢,其实就是输入所有数据的长度,它每次给你返回一个shuffle过的index,以这个方式遍历数据集,通过 getitem(self, index)返回一组你要的(input,target)

    class SVHNDataset(Dataset):
        def __init__(self, img_path, img_label, transform=None):
            self.img_path = img_path
            self.img_label = img_label
            if transform is not None:
                self.transform = transform
            else:
                self.transform = None
    
        def __getitem__(self, index):
            img = Image.open(self.img_path[index]).convert('RGB')
    
            if self.transform is not None:
                img = self.transform(img)
    
            lbl = np.array(self.img_label[index], dtype=np.int)
            lbl = list(lbl)  + (5 - len(lbl)) * [10]
            return img, torch.from_numpy(np.array(lbl[:5]))
    
        def __len__(self):
            return len(self.img_path)
    
    # 训练集
    # glob.glob(): 匹配符合条件的所有文件,并将其以list的形式返回
    # train_path: ['./data/mchar_train/000000.png',...]
    train_path = glob.glob(`'./data/mchar_train/*.png'`)
    train_path.sort()
    train_json = json.load(open(`'./data/mchar_train.json'`))
    train_label = [train_json[x]['label'] for x in train_json]
    print(len(train_path), len(train_label))
    # train data:
    # 30000 30000
    
    # 验证集
    val_path = glob.glob('../../../dataset/tianchi_SVHN/val/*.png')
    val_path.sort()
    val_json = json.load(open('../../../dataset/tianchi_SVHN/val.json'))
    val_label = [val_json[x]['label'] for x in val_json]
    print(len(val_path), len(val_label))
    # val data:
    # 10000 10000
    
    # 测试集
    test_path = glob.glob('./data/mchar_test_a/*.png')
    test_path.sort()
    test_label = [[1]] * len(test_path)
    print(len(test_path), len(test_label))
    

    定义读取数据dataloader

    # Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
    # DataLoder:对Dataset进行封装,提供批量读取的迭代读取
    # 在加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接。
    
    # train
    # SVHNDataset参数:img_path, img_label, transform
    train_loader = torch.utils.data.DataLoader(
        SVHNDataset(train_path, train_label,
                    transforms.Compose([
                        # transforms.Compose: 
                        # 传入参数为一个列表,列表中的元素是对数据进行变换的操作
                        transforms.Resize((64, 128)),
                        transforms.RandomCrop((60, 120)),
                        transforms.ToTensor(),
                        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])),
        batch_size=40,
        shuffle=True,
        num_workers=10,
    )
    # val
    val_loader = torch.utils.data.DataLoader(
        SVHNDataset(val_path, val_label,
                    transforms.Compose([
                        transforms.Resize((60, 120)),
                        transforms.ToTensor(),
                        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])),
        batch_size=40,
        shuffle=False,
        num_workers=10,
    )
    # test
    test_loader = torch.utils.data.DataLoader(
        SVHNDataset(test_path, test_label,
                    transforms.Compose([
                        transforms.Resize((70, 140)),
                        transforms.ToTensor(),
                        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])),
        batch_size=40,
        shuffle=False,
        num_workers=10,
    )
    

    DataLoader

    DataLoader

    Model

    class SVHN_Model1(nn.Module):
        def __init__(self):
            super(SVHN_Model1, self).__init__()
            # 使用resnet18网络
            model_conv = models.resnet18(pretrained=True)
            
            # 将resnet的平均池化设置为自适应平均池化*
            # nn.AdaptiveAvgPool2d(output_size):
            # 将输出尺寸指定为output_size,通道数前后不发生变化。
            model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
            model_conv = nn.Sequential(*list(model_conv.children())[:-1])
            self.cnn = model_conv
            
            self.fc1 = nn.Linear(512, 11)
            self.fc2 = nn.Linear(512, 11)
            self.fc3 = nn.Linear(512, 11)
            self.fc4 = nn.Linear(512, 11)
            self.fc5 = nn.Linear(512, 11)
        
        def forward(self, img):        
            feat = self.cnn(img)
            # print(feat.shape)
            feat = feat.view(feat.shape[0], -1)
            c1 = self.fc1(feat)
            c2 = self.fc2(feat)
            c3 = self.fc3(feat)
            c4 = self.fc4(feat)
            c5 = self.fc5(feat)
            return c1, c2, c3, c4, c5
    

    *nn.AdaptiveAvgPool2d()

    • 参数形式为 output_sizeH*W
    m = nn.AdaptiveAvgPool2d((3,7))
    input = torch.randn(1, 64, 8, 9)
    print(m(input))
    #torch.Size([1, 64, 3, 7])
    
    m = nn.AdaptiveAvgPool2d(7)
    input = torch.randn(1, 64, 10, 9)
    print(m(input))
    #torch.Size([1, 64, 7, 7])
    
    m = nn.AdaptiveAvgPool2d((None, 3))
    input = torch.randn(1, 64, 10, 9)
    print(m(input))
    # torch.Size([1, 64, 10, 3])
    

    Train()

    def train(train_loader, model, criterion, optimizer):
        # 切换模型为训练模式
        model.train()
        train_loss = []
    
        for i, (input, target) in enumerate(train_loader):
            if use_cuda:
                input = input.cuda()
                target = target.cuda()
    
            c0, c1, c2, c3, c4 = model(input)
            loss = criterion(c0, target[:, 0]) + \
                    criterion(c1, target[:, 1]) + \
                    criterion(c2, target[:, 2]) + \
                    criterion(c3, target[:, 3]) + \
                    criterion(c4, target[:, 4])
    
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
            train_loss.append(loss.item())
        return np.mean(train_loss)
    

    ……

    Predict()

    def predict(test_loader, model, tta=10):
        model.eval()
        test_pred_tta = None
        
        # TTA 次数
        for _ in range(tta):
            test_pred = []
        
            with torch.no_grad():
                for i, (input, target) in enumerate(test_loader):
                    if use_cuda:
                        input = input.cuda()
                    
                    c0, c1, c2, c3, c4 = model(input)
                    if use_cuda:
                        output = np.concatenate([
                            c0.data.cpu().numpy(), 
                            c1.data.cpu().numpy(),
                            c2.data.cpu().numpy(), 
                            c3.data.cpu().numpy(),
                            c4.data.cpu().numpy()], axis=1)
                    else:
                        output = np.concatenate([
                            c0.data.numpy(), 
                            c1.data.numpy(),
                            c2.data.numpy(), 
                            c3.data.numpy(),
                            c4.data.numpy()], axis=1)
                    
                    test_pred.append(output)
            
            test_pred = np.vstack(test_pred)
            if test_pred_tta is None:
                test_pred_tta = test_pred
            else:
                test_pred_tta += test_pred
        
        return test_pred_tta
    

    Run

    model = SVHN_Model1()
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), 0.001)
    
    use_cuda = True
    if use_cuda:
        model = model.cuda()
    best_loss = 1000.0
    
    for epoch in range(10):
        train_loss = train(train_loader, model, criterion, optimizer)
        val_loss = validate(val_loader, model, criterion)
        
        val_label = [''.join(map(str, x)) for x in val_loader.dataset.img_label]
        val_predict_label = predict(val_loader, model, 1)
        val_predict_label = np.vstack([
            val_predict_label[:, :11].argmax(1),
            val_predict_label[:, 11:22].argmax(1),
            val_predict_label[:, 22:33].argmax(1),
            val_predict_label[:, 33:44].argmax(1),
            val_predict_label[:, 44:55].argmax(1),
        ]).T
        val_label_pred = []
        for x in val_predict_label:
            val_label_pred.append(''.join(map(str, x[x!=10])))
        
        val_char_acc = np.mean(np.array(val_label_pred) == np.array(val_label))
        
        print('Epoch: {0}, Train loss: {1} \t Val loss: {2} \t Val Acc: {3}'.format(epoch, train_loss, val_loss, val_char_acc))
    
        # 记录下验证集精度
        if val_loss < best_loss:
            best_loss = val_loss
            # print('Find better model in Epoch {0}, saving model.'.format(epoch))
            torch.save(model.state_dict(), './model.pt')
    
    # 加载保存的最优模型
    model.load_state_dict(torch.load('./model.pt'))
    
    test_predict_label = predict(test_loader, model, 1)
    print(test_predict_label.shape)
    
    test_label = [''.join(map(str, x)) for x in test_loader.dataset.img_label]
    test_predict_label = np.vstack([
        test_predict_label[:, :11].argmax(1),
        test_predict_label[:, 11:22].argmax(1),
        test_predict_label[:, 22:33].argmax(1),
        test_predict_label[:, 33:44].argmax(1),
        test_predict_label[:, 44:55].argmax(1),
    ]).T
    
    test_label_pred = []
    for x in test_predict_label:
        test_label_pred.append(''.join(map(str, x[x!=10])))
    
    • 按照题目要求格式存储预测结果
    import pandas as pd
    df_submit = pd.read_csv('./data/mchar_sample_submit_A.csv')
    df_submit['file_code'] = test_label_pred
    df_submit.to_csv('submit.csv', index=None)
    

    代码来源:DataWhale

  • 相关阅读:
    0414结对 复利
    0619-学习进度条
    测试
    冲刺一总结
    实验四主存空间的分配和回收
    0622-软件工程学期总结
    学术诚信与职业道德有感
    《构建之法》第8、9、10章
    0512 操作系统进程调度实验
    构建之法 第6~7章读后感和对Scrum的理解
  • 原文地址:https://www.cnblogs.com/ArdenWang/p/16122350.html
Copyright © 2020-2023  润新知