• POJ 1398 Complete the sequence! ★ (差分)


    题目链接http://poj.org/problem?id=1398 题目大意给定一个长度为s的数列a1,a2,a3,……,as,并知道它的通项可以用多项式P(n)表示出来,求数列的后c项思路:标准的做好像是数值分析的拉格朗日插值法,但求解这种数列问题我们有更好的差分方法,过程中完全不涉及浮点数操作。比如说,对于1 2 4 7 11 16 22 29这个数列,我们对于每一项做其和前一项的差,也就是2-1=1, 4-2=2, 7-4=3, ....这样,我们得到一个1阶差分:1, 2, 3, 4, 5, 6, 7。我们再求得2阶差分是:1, 1, 1, 1, 1, 1。这时,规律已经有些明显了。 也就是说,对于任意一个存在合理多项式通项的数列,用差分的方法是可以得到它的解的:只要求得这个n项数列的n-1阶差分,然后倒推回去就可以了。 那么为什么可以这样呢?可以这样理解:对于任意满足多项式P(n) = aD.n^D+aD-1.n^D-1+...+a1.n+a0的D阶多项式,取一阶差分得:tmp = P(n) - P(n - 1)肯定是个D-1阶多项式,以此类推,取n-1阶差分,就只剩下一个数d (程序中为f[n-1][0]), 如果d = 0,如果想使得P(n)的阶最小,第n-1阶差分中接下来的m个数应该都为0,如果d != 0,当接着的m个数都为d时,则第n-2阶为1阶多项式(只有一阶多项式(a1.n + a0, 公差为a1)的差分才为一个常数),第n-1阶为0阶多项式,才能保证阶D最小。  
    #include 
    #include 
    using namespace std;
    int main(){
        int a[110][110];
        int t, s, c;
        scanf("%d",&t);
        while(t --){
            memset(a, 0, sizeof(a));
            scanf("%d%d",&s, &c);
            for (int i = 0; i < s; i ++){
                scanf("%d", &a[0][i]);
            }
            for (int i = 1; i < s; i ++){
                for (int j = 0; j < s - i; j ++){
                    a[i][j] = a[i-1][j+1] - a[i-1][j];
                }
            }
            for (int i = 1; i <= c; i ++)
                a[s-1][i] = a[s-1][0];
            for (int i = s - 2; i >= 0; i --){
                for (int j = 0; j < c; j ++){
                    a[i][s-i+j] = a[i+1][s-i+j-1] + a[i][s-i+j-1];
                }
            }
            for (int i = 0; i < c - 1; i ++){
                printf("%d ", a[0][s+i]);
            }
            printf("%d\n",a[0][s+c-1]);
        }
        return 0;
    }
    
     
    举杯独醉,饮罢飞雪,茫然又一年岁。 ------AbandonZHANG
  • 相关阅读:
    反射
    left join 多个表关联时,将表值置换
    distinct 与 group by 去重
    常见错误
    字符串的处理
    排版样式
    VS低版本打开高版本解决方案(如08打开10、12、13版本vs编译的项目)
    Dw CS 破解
    VS2013如何避开安装时IE10的限制
    UVa540 Team Queue
  • 原文地址:https://www.cnblogs.com/AbandonZHANG/p/4114189.html
Copyright © 2020-2023  润新知