• SGU 185 Two shortest ★(最短路+网络流)


    题意】给出一个图,求 1 -> n的2条 没有重边的最短路。 真◆神题……卡内存卡得我一脸血= =…… 【思路】 一开始我的想法是两遍Dijkstra做一次删一次边不就行了么你们还又Dijkstra预处理又最大流的Too naive……结果事实证明从来都是我naive= =……明显是不行的……最大流可能有好几条……但不重边的更少……也许第一次Dijkstra找到的是最短路但不是最后不重边的最短路,然后就这么把边删了显然不对…… 所以我们还是言归正解吧……这道题就是ZOJ 2760的升级版吧……也是,可以floyd可以源汇点Dij预处理先筛出最短路上的边加入到网络流中,容量限制为2。那么最大流==2就有解,然后沿着满流边dfs 2遍就找到这两条路了~ 次奥卡内存卡的啊……只能用4000KB内存!!最后还是改了两个short int才勉强过了T_T……  
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #define MID(x,y) ((x+y)/2)
    #define mem(a,b) memset(a,b,sizeof(a))
    using namespace std;
    const int MAXV = 405;
    const int MAXE = 170055;
    const int oo = 0x3fffffff;
    short int map[MAXV][MAXV];
    int ds[MAXV], dt[MAXV];
    void dijkstra(int *dist, int s, int t, int n){
        bool vis[MAXV] = {0};
        for (int i = 0; i <= n; i ++){
            dist[i] = oo;
        }
        dist[s] = 0;
        for(int p = 1; p <= n; p ++){
            int minx = oo;
            int u;
            for (int i = 1; i <= n; i ++){
                if (!vis[i] && dist[i] < minx){
                    minx = dist[i];
                    u = i;
                }
            }
            if (minx == oo)
                break;
            vis[u] = 1;
            for (int v = 1; v <= n; v ++){
                if (v == u || vis[v] || map[u][v] == 30000) continue;
                if (dist[v] > dist[u] + map[u][v]){
                    dist[v] = dist[u] + map[u][v];
                }
            }
        }
    }
    struct node{
        short int u, v;
        int flow;
        int next;
    };
    struct Dinic{
        node arc[MAXE];
        int vn, en, head[MAXV];     //vn点个数(包括源点汇点),en边个数
        int cur[MAXV];              //当前弧
        int q[MAXV];                //bfs建层次图时的队列
        int path[MAXE], top;        //存dfs当前最短路径的栈
        int dep[MAXV];              //各节点层次
        void init(int n){
            vn = n;
            en = 0;
            mem(head, -1);
        }
        void insert_flow(int u, int v, int flow){
            arc[en].u = u;
            arc[en].v = v;
            arc[en].flow = flow;
            arc[en].next = head[u];
            head[u] = en ++;
    
            arc[en].u = v;
            arc[en].v = u;
            arc[en].flow = 0;       //反向弧
            arc[en].next = head[v];
            head[v] = en ++;
        }
        bool bfs(int s, int t){
            mem(dep, -1);
            int lq = 0, rq = 1;
            dep[s] = 0;
            q[lq] = s;
            while(lq < rq){
                int u = q[lq ++];
                if (u == t){
                    return true;
                }
                for (int i = head[u]; i != -1; i = arc[i].next){
                    int v = arc[i].v;
                    if (dep[v] == -1 && arc[i].flow > 0){
                        dep[v] = dep[u] + 1;
                        q[rq ++] = v;
                    }
                }
            }
            return false;
        }
        int solve(int s, int t){
            int maxflow = 0;
            while(bfs(s, t)){
                int i, j;
                for (i = 1; i <= vn; i ++)  cur[i] = head[i];
                for (i = s, top = 0;;){
                    if (i == t){
                        int mink;
                        int minflow = 0x3fffffff;
                        for (int k = 0; k < top; k ++)
                            if (minflow > arc[path[k]].flow){
                                minflow = arc[path[k]].flow;
                                mink = k;
                            }
                        for (int k = 0; k < top; k ++)
                            arc[path[k]].flow -= minflow, arc[path[k]^1].flow += minflow;
                        maxflow += minflow;
                        top = mink;		//arc[mink]这条边流量变为0, 则直接回溯到该边的起点即可(这条边将不再包含在增广路内).
                        i = arc[path[top]].u;
                    }
                    for (j = cur[i]; j != -1; cur[i] = j = arc[j].next){
                        int v = arc[j].v;
                        if (arc[j].flow && dep[v] == dep[i] + 1)
                            break;
                    }
                    if (j != -1){
                        path[top ++] = j;
                        i = arc[j].v;
                    }
                    else{
                        if (top == 0)   break;
                        dep[i] = -1;
                        i = arc[path[-- top]].u;
                    }
                }
            }
            return maxflow;
        }
    }dinic;
    int pre[MAXV];
    bool vis[MAXV];
    stack  path;
    int ok;
    void dfs(int u, int n){
        if (u == n){
            ok = 1;
            while(!path.empty()){
                path.pop();
            }
            while(pre[u] != -1){
                path.push(u);
                dinic.arc[pre[u]].flow = 1;
                dinic.arc[pre[u]^1].flow = 1;
                u = dinic.arc[pre[u]].u;
            }
            return ;
        }
        vis[u] = 1;
        for (int i = dinic.head[u]; i != -1; i = dinic.arc[i].next){
            if (i % 2 == 1 || dinic.arc[i].flow != 0)   continue;
            int v = dinic.arc[i].v;
            if (vis[v]) continue;
            pre[v] = i;
            dfs(v, n);
            if (ok)
                return ;
            pre[v] = -1;
        }
        return ;
    }
    int main(){
    	//freopen("test.in", "r", stdin);
    	//freopen("test.out", "w", stdout);
        int n, m;
        scanf("%d %d", &n, &m);
        for (int i = 0; i <= n; i ++){
            for (int j = 0; j <= n; j ++){
                map[i][j] = 30000;
            }
        }
        for (int i = 0; i < m; i ++){
            int u, v, w;
            scanf("%d %d %d", &u, &v, &w);
            map[u][v] = map[v][u] = w;
            if (u == v)
                map[u][v] = 0;
        }
        dijkstra(ds, 1, n, n);
        dijkstra(dt, n, 1, n);
        dinic.init(n+2);
        dinic.insert_flow(n+1, 1, 2);
        dinic.insert_flow(n, n+2, 2);
        for (int i = 1; i <= n; i ++){
            for (int j = 1; j <= n; j ++){
                if (i == j) continue;
                if (ds[i] + map[i][j] + dt[j] == ds[n]){
                    dinic.insert_flow(i, j, 1);
                }
            }
        }
        if (dinic.solve(n+1, n+2) == 2){
            mem(pre, -1);
            mem(vis, 0);
            ok = 0;
            dfs(1, n);
            printf("1");
            while(!path.empty()){
                printf(" %d", path.top());
                path.pop();
            }
            puts("");
    
            mem(pre, -1);
            mem(vis, 0);
            ok = 0;
            dfs(1, n);
            printf("1");
            while(!path.empty()){
                printf(" %d", path.top());
                path.pop();
            }
            puts("");
        }
        else{
            puts("No solution");
        }
    	return 0;
    }
    
     
  • 相关阅读:
    go chapter 4
    go chapter 3
    ETCD相关介绍--整体概念及原理方面
    go chapter 2
    go chapter 1
    使用kubeadm搭建kubernetes1.10集群 Posted on April 14, 2018
    单用户passwd修改root密码没反应
    is not in the sudoers file解决方案
    版本更换,开始学习鸟哥的私房菜
    ubuntu 常见命令
  • 原文地址:https://www.cnblogs.com/AbandonZHANG/p/4114049.html
Copyright © 2020-2023  润新知