• P3688 [ZJOI2017] 树状数组 【二维线段树】


    题目描述:这里有一个写挂的树状数组:

    img

    有两种共(m)个操作:

    1. 输入(l,r),在([l,r])中随机选择一个整数(x)执行( ext{Add}(x))

    2. 输入(l,r),询问执行( ext{Query}(l,r))的答案正确的概率( ext{mod} 998244353)

    数据范围:(n,mleq 100000)


    首先,根据这个代码,我们知道这就是一个单点修改求后缀和的数据结构。所以( ext{Query}(l,r))求的是([l-1,r-1])的和。所以正确当且仅当(a_{l-1}=a_r)

    注意,如果你直接维护每个数为(0,1)的概率,就会出现可能多次修改的问题。所以要((x,y))维护(a_x eq a_y)的概率。我们知道(a_x eq a_y)的概率为(p),并以(q)的概率修改,则之后的概率为(p(1-q)+q(1-p)),这个标记是可合并的。所以:

    1. (xin [1,l-1],yin [l,r])(xin [l,r],yin [r+1,n]),则以(frac{1}{r-l+1})的概率修改。
    2. (x,yin [l,r]),则以(frac{2}{r-l+1})的概率修改。

    注意,上面( ext{Find}(x))特判了(x=0)的情况,所以若(l=1)则计算的是(r)的后缀和,所以用((0,x))维护(x)的前缀和是否等于(x)的后缀和的概率。

    1. (x otin [l,r]),则以1的概率修改。
    2. (xin [l,r]),则以(frac{r-l}{r-l+1})的概率修改。

    而且询问是单点询问,所以我们可以使用二维线段树维护并标记永久化。

    如果你不想卡常并最大点使用时限(-0.01s)通过Luogu评测,而且不能在UOJ通过,可以使用cdq分治,但是我不会。。。

    #include<bits/stdc++.h>
    #define Rint register int
    using namespace std;
    typedef long long LL;
    const int N = 100003, mod = 998244353;
    inline int kasumi(int a, int b){
    	int res = 1;
    	while(b){
    		if(b & 1) res = (LL) res * a % mod;
    		a = (LL) a * a % mod; b >>= 1;
    	}
    	return res;
    }
    int n, m, inv[N], root[N << 2], val[N * 350], ls[N * 350], rs[N * 350], cnt;
    inline int Add(int a, int b){return (a + b >= mod) ? (a + b - mod) : (a + b);}
    inline int Sub(int a, int b){return (a < b) ? (a + mod - b) : (a - b);}
    inline int add(int a, int b){return Add((LL) a * Sub(1, b) % mod, (LL) b * Sub(1, a) % mod);}
    inline void change(int &x, int L, int R, int l, int r, int v){
    	if(!x) x = ++ cnt;
    	if(l <= L && R <= r){val[x] = add(val[x], v); return;}
    	int mid = L + R >> 1;
    	if(l <= mid) change(ls[x], L, mid, l, r, v);
    	if(mid < r) change(rs[x], mid + 1, R, l, r, v);
    }
    inline int query(int x, int L, int R, int p){
    	if(!x) return 0;
    	if(L == R) return val[x];
    	int mid = L + R >> 1;
    	if(p <= mid) return add(val[x], query(ls[x], L, mid, p));
    	else return add(val[x], query(rs[x], mid + 1, R, p));
    }
    inline void change(int x, int L, int R, int l1, int r1, int l2, int r2, int v){
    	if(l1 <= L && R <= r1){change(root[x], 1, n, l2, r2, v); return;}
    	int mid = L + R >> 1;
    	if(l1 <= mid) change(x << 1, L, mid, l1, r1, l2, r2, v);
    	if(mid < r1) change(x << 1 | 1, mid + 1, R, l1, r1, l2, r2, v);
    }
    inline int query(int x, int L, int R, int p1, int p2){
    	if(L == R) return query(root[x], 1, n, p2);
    	int mid = L + R >> 1;
    	if(p1 <= mid) return add(query(root[x], 1, n, p2), query(x << 1, L, mid, p1, p2));
    	else return add(query(root[x], 1, n, p2), query(x << 1 | 1, mid + 1, R, p1, p2));
    }
    int main(){
    	scanf("%d%d", &n, &m);
    	for(Rint i = 1;i <= n;i ++) inv[i] = kasumi(i, mod - 2);
    	while(m --){
    		int opt, l, r;
    		scanf("%d%d%d", &opt, &l, &r);
    		if(opt == 1){
    			if(l > 1){
    				change(root[0], 1, n, 1, l - 1, 1);
    				change(1, 1, n, 1, l - 1, l, r, inv[r - l + 1]);
    			}
    			if(r < n){
    				change(root[0], 1, n, r + 1, n, 1);
    				change(1, 1, n, l, r, r + 1, n, inv[r - l + 1]);
    			}
    			if(l < r) change(1, 1, n, l, r, l, r, 2ll * inv[r - l + 1] % mod);
    			change(root[0], 1, n, l, r, Sub(1, inv[r - l + 1]));
    		} else if(l == 1) printf("%d
    ", Sub(1, query(root[0], 1, n, r)));
    		else printf("%d
    ", Sub(1, query(1, 1, n, l - 1, r)));
    	}
    }
    
  • 相关阅读:
    手动安装mysql
    spring boot 配置注入
    IOS-电话拦截
    重新入坑-IntelliJ Maven
    git使用问题
    Intelij U
    iTunes空间不足无法备份iphone的问题
    Centos7最小化安装
    实操笔记
    centos7中端口及服务对应情况(笔记)
  • 原文地址:https://www.cnblogs.com/AThousandMoons/p/11558901.html
Copyright © 2020-2023  润新知