• HDU 3496 (二维费用的01背包) Watch The Movie


    多多想看N个动画片,她对这些动画片有不同喜欢程度,而且播放时长也不同

    她的舅舅只能给她买其中M个(不多不少恰好M个),问在限定时间内观看动画片,她能得到的最大价值是多少

    如果她不能在限定时间内看完买回来的动画片,则输出0

    这里借用大牛的背包九讲的讲义,讲的很清楚

    问题

    二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。

    算法

    费用加了一维,只需状态也加一维即可。设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。状态转移方程就是:

    f[i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}

    如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量v和u采用逆序的循环,当物品有如完全背包问题时采用顺序的循环。当物品有如多重背包问题时拆分物品。这里就不再给出伪代码了,相信有了前面的基础,你能够自己实现出这个问题的程序。

    物品总个数的限制

    有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案。

    和一维01背包一样,如果倒序循环的话会省去一个维度

     1 //#define LOCAL
     2 #include <iostream>
     3 #include <cstdio>
     4 #include <cstring>
     5 using namespace std;
     6 
     7 int dp[110][1010];
     8 const int INF = -9999999;
     9 int t[110], v[110];
    10 
    11 int main(void)
    12 {
    13     #ifdef LOCAL
    14         freopen("3496in.txt", "r", stdin);
    15     #endif
    16 
    17     int T, n, m, l;
    18     scanf("%d", &T);
    19     while(T--)
    20     {
    21         scanf("%d%d%d", &n, &m, &l);
    22         for(int i = 0; i < n; ++i)
    23             scanf("%d%d", &t[i], &v[i]);
    24         for(int i = 0; i <= m; ++i)
    25         {
    26             for(int j = 0; j <= l; ++j)
    27             {
    28                 if(i == 0)    dp[i][j] = 0;
    29                 else dp[i][j] = INF;
    30             }
    31         }
    32         for(int i = 0; i < n; ++i)
    33             for(int j = m; j >= 1; --j)
    34                 for(int k = l; k >= t[i]; --k)
    35                     dp[j][k] = max(dp[j][k], dp[j-1][k-t[i]] + v[i]);
    36         if(dp[m][l] < 0)    dp[m][l] = 0;
    37         printf("%d
    ", dp[m][l]);
    38     }
    39     return 0;
    40 }
    代码君
  • 相关阅读:
    SQL SERVER中变量的定义、赋值与使用
    框架设计总结
    Sass学习之路(5)——变量
    gulp入坑系列(4)——gulp的代码转换
    gulp入坑系列(3)——创建多个gulp.task
    Sass学习之路(4)——不同样式风格的输出方式
    Sass学习之路(3)——Sass编译
    gulp入坑系列(2)——初试JS代码合并与压缩
    gulp入坑系列(1)——安装gulp
    Sass学习之路(2)——Sass环境安装(windows版)
  • 原文地址:https://www.cnblogs.com/AOQNRMGYXLMV/p/3950459.html
Copyright © 2020-2023  润新知