• 矩阵按列按行归一化到L2范数的原理和最精简Matlab代码(转)


    在模式识别和机器学习的数据预处理过程中,对数据集按行或者按列进行L2范数归一化是一种常见的归一化方式,因此本文将介绍对向量进行L2范数归一化的原理和方法,并给出相关的Matlab源代码,供后学者作为基础知识参考使用。

     

        由此,我们可以很块的写出最简单的matlab源代码如下:

        首先按行归一化:

    % Examples

    A=[3 4;5 12];

    [m n] = size(A);

    % normalize each row to unit

    for i = 1:m

        A(i,:)=A(i,:)/norm(A(i,:));

    end

     

        按列归一化:

    % normalize each column to unit

    A=[3 4;5 12];

    for i = 1:n

        A(:,i)=A(:,i)/norm(A(:,i));

    end

     

        然而,上述代码最能实现功能,但并不是最优的,它只是一种对该过程的最佳理解代码。在Matlab中,for循环是一件非常费时间的结构,因此我们在代码中应该尽量少用for循环。由此,我们可以用repmat命令得到另一种更加简洁更加快速的代码,只是这种代码对于初学者理解起来比较费劲。可以看错是自己水平的一种进阶吧。

    %  normalize each row to unit

    A = A./repmat(sqrt(sum(A.^2,2)),1,size(A,2));

    %  normalize each column to unit

    A = A./repmat(sqrt(sum(A.^2,1)),size(A,1),1);

     



    http://blog.sciencenet.cn/blog-810210-655011.html

  • 相关阅读:
    著名的小退问题
    Oracle学习笔记(十二)
    Oracle学习笔记(十一)
    Oracle学习笔记(十)
    Oracle学习笔记(九)
    Oracle学习笔记(八)
    Oracle学习笔记(七)
    Oracle学习笔记(六)
    Oracle学习笔记(五)
    Oracle学习笔记(四)
  • 原文地址:https://www.cnblogs.com/594jing/p/3254403.html
Copyright © 2020-2023  润新知