• BZOJ4350: 括号序列再战猪猪侠


    Description

    括号序列与猪猪侠又大战了起来。
    众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号
    序列S合法,当且仅当:
    1.( )是一个合法的括号序列。
    2.若A是合法的括号序列,则(A)是合法的括号序列。
    3.若A,B是合法的括号序列,则AB是合法的括号序列。
    我们考虑match[i]表示从左往右数第i个左括号所对应的是第几个右
    括号,现在他得到了一个长度为2n的括号序列,给了你m个信息,第i
    个信息形如ai,bi,表示match[ai]<match[bi],要你还原这个序列。
    但是你发现这个猪猪侠告诉你的信息,可能有多个括号序列合法;甚
    至有可能告诉你一个不存在合法括号序列的信息!
    你最近学了取模运算,你想知道答案对998244353(7*17*2^23+1)取
    模的结果,这个模数是一个质数。

    Input

    第一行一个正整数T,T< = 5,表示数据组数。
    对于每组数据,第一行一个n,m,n表示有几个左括号,m表示信息数。
    接下来m行,每行两个数ai,bi,1< = ai,bi< = n。

    Output

    对于每组数据,输出一个数表示答案。

    Sample Input

    5
    1 0
    5 0
    3 2
    1 2
    2 3
    3 2
    2 1
    2 3
    3 3
    1 2
    2 3
    3 1

    Sample Output

    1
    42
    1
    2
    0

    HINT

     对于前两个点,是卡特兰数的情况。

    对于第三个点,合法的情况只可能是 ()()()。
    对于第四个点,合法情况可能是 (()()) 或者 (())()、
    对于第五个点,由于拓扑关系形成了环,显然无解。
    对于 100% 的数据,保证 n < = 300
    题解:如果match[ai]<match[bi],那么为了序列能合法,若ai<bi,ai所对应的右括号也一定在bi的左边,若ai>bi,ai和它所对应的右括号,一定被bi所对应的的括号包在中间,我们来考虑一下括号有几种可能吧,很显然有(AB),()AB,{AB()可看做同种情况},(A)B,这三种方案,我们枚举一个区间的左括号,f[i][j]表示第i个左括号到第j个左括号能形成多少种方案。
       1.如果要符合上面的第一种方案,那么很明显第i个左括号和它对应的右括号不能完全在AB的左边,即第i个左括号对第i+1到j之间的左括号不能有任何一个被提出过match[i]<match[i+1~j],如果符合的话我们就加上f[i+1][j]。
       2.如果要符合第二种方案,那么第i个左括号和它对应的右括号必须完全在AB的左边,即第i个左括号对第i+1到j之间的左括号必须每个都被提出过match[i]<match[i+1~j],等同于第i+1~j之间的括号对第i个括号没有被提出过match[i+1~j]<match[i],如果符合的话我们就加上f[i+1][j]。
       3.如果要符合第三种我们就要进行枚举了,因为我们不知道B序列最右边的左括号是总序列中的第几个括号。枚举一个k来表示A中的最后一个左括号,则B中的开头左括号为k+1,我们要如何满足这种条件呢?有两个注意点,(1).k+1到j的括号必须全部都在i~k括号的右边。(2).i+1~k括号必须包含在第i个括号中,即第i个括号不能在他们的右边。
    只要满足注意点,它的方案数就可加上两边的乘积。
    最最重要的一点来了,我们如何去判断括号在左边右边呢?不要说去一个个枚举。。。我们用一个s数组来储存关系,若match[ai]<match[bi],则s[ai][bi]赋值为1,反之,赋值为0,假设我们现在需要第a~b个左括号全部都在第c~d个括号包括对应的右括号的右边就是说任何一个s[ai~bi][ci~di]都需要为0,那么实际上我们只要知道一个左上角为a,b,右下角为c,d的矩阵中的元素为0,就可以了。那么判断的时候我们只需要用矩阵前缀和就可以用O(1)的复杂度算出矩阵的值从而判断左右关系。
    大概就是这样了,具体程序看吧。
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    using namespace std;
    int j,n,m,t,x,y,s[500][500];
    long long f[500][500];//一定要记得开long long,否则。。。
    int kk=998244353;
    int check(int a,int b,int c,int d)
    {
        return (s[c][d]-s[c][b-1]-s[a-1][d]+s[a-1][b-1]);
    }
    void work()
    {   
            memset(s,0,sizeof(s));//记得清空
        memset(f,0,sizeof(f));    
        cin>>n>>m;
        for (int i=1;i<=m;i++) 
        {
          
          cin>>x>>y;
          s[x][y]=1;//记录对应的关系
        }
        for (int i=1;i<=n;i++)
         for (int j=1;j<=n;j++)
         s[i][j]=s[i][j]+s[i-1][j]+s[i][j-1]-s[i-1][j-1];//矩阵前缀和
        for (int i=1;i<=n;i++)
        if (check(i,i,i,i)==1)//如果自身对自身有所限制的话,那么这种情况是不存在的,可以直接输出0.
        {
            printf("0
    ");
            return;
        } 
        for (int i=1;i<=n;i++) f[i][i]=1;//构成单个括号的可能性只有一种
        
        for (int len=2;len<=n;len++)
         for (int i=1;i<=n-len+1;i++)
         {
             j=i+len-1;
             if (check(i,i+1,i,j)==0) f[i][j]=(f[i][j]+f[i+1][j])%kk;
             if (check(i+1,i,j,i)==0) f[i][j]=(f[i][j]+f[i+1][j])%kk;
             for (int k=i+1;k<=j-1;k++)
             if ((check(k+1,i,j,k)==0)&&(check(i,i+1,i,k)==0))
             f[i][j]=(f[i][j]+f[i+1][k]*f[k+1][j]%kk)%kk;//这个程序中解释过了
         }
        cout<<f[1][n]<<endl;
    }
    int main()
    {
      cin>>t;
      for (int i=1;i<=t;i++) //多组输入数据
      work();
      return 0; 
    }
  • 相关阅读:
    linux的vim按了ctrl+s之后假死的解决办法
    linux下的终端模拟器urxvt的配置
    vim下正则表达式的非贪婪匹配
    linux中的一个看图的软件
    解决windows的控制台显示utf8乱码的问题
    [PHP][位转换积累]之异或运算的简单加密应用
    [PHP][REDIS]phpredis 'RedisException' with message 'read error on connection'
    [PHP][位转换积累]之与运算截取二进制流的值
    [PHP][位转换积累]之pack和unpack
    [正则表达式]PCRE反向分组引用
  • 原文地址:https://www.cnblogs.com/2014nhc/p/6247337.html
Copyright © 2020-2023  润新知