• bzoj4869


    http://www.lydsy.com/JudgeOnline/problem.php?id=4869

    终于A了。。。参考了下dalao的代码。。。

    拓展欧几里得定理,改了几次就不变了,但是用的时候要在快速幂里判是不是要用。

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int N = 100010;
    int n, m, cnt;
    ll p, c;
    ll phi[N], table[N];
    namespace seg // n^x = n^(x % phi[x] + phi[x])
    {
        struct data {
            ll ans, mn;
        } tree[N << 2];
        inline ll getphi(ll x)
        {
            ll ret = x, lim = x;
            for(ll i = 2; i * i <= lim; ++i) if(x % i == 0) 
            {
                ret = ret * (i - 1) / i;
                while(x % i == 0) x /= i;
            }
    //      printf("ret=%d
    ", ret);
            if(x > 1) ret = ret * (x - 1) / x;
            return ret;
        }
        inline ll power(ll x, ll t, ll p, bool &flag)
        {
            bool big = false;
            ll ret = 1; 
            for(; t; t >>= 1) 
            {
                if(t & 1) 
                {
                    ret = ret * x ;
                    flag |= big | (ret >= p);        
                    ret %= p;
                }
                x = x * x; if(x >= p) big = true, x %= p; 
            }
            return ret; 
        }
        ll calc(ll x, int t)
        {
            if(x >= phi[t]) x = x % phi[t] + phi[t];
            for(int i = t - 1; i >= 0; --i) 
            {
                bool flag = false;
                x = power(c, x, phi[i], flag);
                if(flag) x += phi[i];
            }
            return x % phi[0];
        }
        inline void build(int l, int r, int x)
        {
            if(l == r) { 
                tree[x].ans = table[l]; 
                return; 
            }
            int mid = (l + r) >> 1;
            build(l, mid, x << 1); 
            build(mid + 1, r, x << 1 | 1);
            tree[x].ans = (tree[x << 1].ans 
                         + tree[x << 1 | 1].ans) % phi[0];
        } 
        inline void update(int l, int r, int x, int a, int b)
        { //如果这次的幂和上次一样就不变了 
            if(tree[x].mn >= cnt) return;
            if(l > b || r < a) return;
            if(l == r)
            {
                ++tree[x].mn;
                tree[x].ans = calc(table[l], tree[x].mn);
                return;
            }
            int mid = (l + r) >> 1;
            update(l, mid, x << 1, a, b); 
            update(mid + 1, r, x << 1 | 1, a, b);
            tree[x].mn = min(tree[x << 1].mn, 
                             tree[x << 1 | 1].mn);
            tree[x].ans = (tree[x << 1].ans + 
                           tree[x << 1 | 1].ans) % phi[0]; 
        }
        inline ll query(int l, int r, int x, int a, int b)
        {
            if(l > b || r < a) return 0;
            if(l >= a && r <= b) return tree[x].ans % phi[0];
            int mid = (l + r) >> 1, ret = 0;
            ret = (ret + query(l, mid, x << 1, a, b)) % phi[0];
            ret = (ret + query(mid + 1, r, x << 1 | 1, a, b)) % phi[0];
            return ret;    
        } 
    } using namespace seg;
    int main()
    {
        scanf("%d%d%lld%lld", &n, &m, &p, &c);
        phi[0] = p;
        ll P = p;
        while(P != 1) phi[++cnt] = P = getphi(P);
        phi[++cnt] = 1; 
        for(int i = 1; i <= n; ++i) scanf("%lld", &table[i]);
        build(1, n, 1); 
        while(m--)
        {
            int opt, l, r; scanf("%d", &opt);
            if(opt == 0)
            {
                scanf("%d%d", &l, &r); 
                update(1, n, 1, l, r);
            }
            if(opt == 1) 
            {
                scanf("%d%d", &l, &r);
                printf("%lld
    ", query(1, n, 1, l, r));
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    oracle ebs应用产品安全性-交叉验证规则
    ORA-04021 timeout occurred while waiting to lock object
    ORA-04021:timeout occurred while waiting to lock object
    ebs双节点webservice部署问题
    ebs如何将客户化的PL/SQL程序发布到webservice
    adcfgclone.pl appsTier报错Unable to locate 'linkxlC' utility in path
    CS231n 作业1 SVM+softmax+两层神经网络
    ReVision: Automated Classification, Analysisand Redesign of Chart Images
    No.1 Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations
    HankerRank刷题第四天(排序类型)Quicksort In-Place
  • 原文地址:https://www.cnblogs.com/19992147orz/p/6832433.html
Copyright © 2020-2023  润新知