二叉树之统计二叉树的节点个数
一,问题描述
给定一颗二叉树,已知其根结点。
①计算二叉树所有结点的个数
②计算二叉树中叶子结点的个数
③计算二叉树中满节点(度为2)的个数
二,算法分析
找出各个问题的基准条件,然后采用递归的方式实现。
①计算二叉树所有结点的个数
1)当树为空时,结点个数为0,否则为根节点个数 加上 根的左子树中节点个数 再加上 根的右子树中节点的个数
借助遍历二叉树的思路,每访问一个结点,计数增1。因此,可使用类似于先序遍历的思路来实现,代码如下:
1 //计算树中节点个数 2 private int nubmerOfNodes(BinaryNode<T> root){ 3 int nodes = 0; 4 if(root == null) 5 return 0; 6 else{ 7 nodes = 1 + nubmerOfNodes(root.left) + nubmerOfNodes(root.right); 8 } 9 return nodes; 10 }
计算树中节点个数的代码方法与计算树的高度的代码非常相似!
②计算叶子结点的个数
1)当树为空时,叶子结点个数为0
2)当某个节点的左右子树均为空时,表明该结点为叶子结点,返回1
3)当某个节点有左子树,或者有右子树时,或者既有左子树又有右子树时,说明该节点不是叶子结点,因此叶结点个数等于左子树中叶子结点个数 加上 右子树中叶子结点的个数
这种形式的递归返回的node值 是最外层方法的node。
1 //计算树中叶结点的个数 2 private int numberOfLeafs(BinaryNode<T> root){ 3 int nodes = 0; 4 if(root == null) 5 return 0; 6 else if(root.left == null && root.right == null) 7 return 1; 8 else 9 nodes = numberOfLeafs(root.left) + numberOfLeafs(root.right); 10 return nodes; 11 }
③计算满节点的个数(对于二叉树而言,满节点是度为2的节点)
满节点的基准情况有点复杂:
1)当树为空时,满节点个数为0
2)当树中只有一个节点时,满节点个数为0
3)当某节点只有左子树时,需要进一步判断左子树中是否存在满节点
4)当某节点只有右子树时,需要进一步判断右子树中是否存在满节点
5)当某节点即有左子树,又有右子树时,说明它是满结点。但是由于它的左子树或者右子树中可能还存在满结点,因此满结点个数等于该节点加上该节点的左子树中满结点的个数 再加上 右子树中满结点的个数。
代码如下:
1 //计算树中度为2的节点的个数--满节点的个数 2 private int numberOfFulls(BinaryNode<T> root){ 3 int nodes = 0; 4 if(root == null) 5 return 0; 6 else if(root.left == null && root.right == null) 7 return 0; 8 else if(root.left == null && root.right != null) 9 nodes = numberOfFulls(root.right); 10 else if(root.left != null && root.right == null) 11 nodes = numberOfFulls(root.left); 12 else 13 nodes = 1 + numberOfFulls(root.left) + numberOfFulls(root.right); 14 return nodes; 15 }
对于二叉树而言,有一个公式:度为2的结点个数等于度为0的结点个数减去1。 即:n(2)=n(0)-1
故可以这样:
private int numberOfFulls(BinaryNode<T> root){ return numberOfLeafs(root) > 0 ? numberOfLeafs(root)-1 : 0;// n(2)=n(0)-1 }
二,完整程序代码如下:
1 import c2.C2_2_8; 2 3 public class BinarySearchTree<T extends Comparable<? super T>> { 4 5 private static class BinaryNode<T> { 6 T element; 7 BinaryNode<T> left; 8 BinaryNode<T> right; 9 10 public BinaryNode(T element) { 11 this(element, null, null); 12 } 13 14 public BinaryNode(T element, BinaryNode<T> left, BinaryNode<T> right) { 15 this.element = element; 16 this.left = left; 17 this.right = right; 18 } 19 20 public String toString() { 21 return element.toString(); 22 } 23 } 24 25 private BinaryNode<T> root; 26 27 public BinarySearchTree() { 28 root = null; 29 } 30 31 public void insert(T ele) { 32 root = insert(ele, root);// 每次插入操作都会'更新'根节点. 33 } 34 35 private BinaryNode<T> insert(T ele, BinaryNode<T> root) { 36 if (root == null) 37 return new BinaryNode<T>(ele); 38 int compareResult = ele.compareTo(root.element); 39 if (compareResult > 0) 40 root.right = insert(ele, root.right); 41 else if (compareResult < 0) 42 root.left = insert(ele, root.left); 43 else 44 ; 45 return root; 46 } 47 48 public int height() { 49 return height(root); 50 } 51 52 private int height(BinaryNode<T> root) { 53 if (root == null) 54 return -1;// 叶子节点的高度为0,空树的高度为1 55 56 return 1 + (int) Math.max(height(root.left), height(root.right)); 57 } 58 59 public int numberOfNodes(BinarySearchTree<T> tree){ 60 return nubmerOfNodes(tree.root); 61 } 62 63 //计算树中节点个数 64 private int nubmerOfNodes(BinaryNode<T> root){ 65 int nodes = 0; 66 if(root == null) 67 return 0; 68 else{ 69 nodes = 1 + nubmerOfNodes(root.left) + nubmerOfNodes(root.right); 70 } 71 return nodes; 72 } 73 74 75 public int numberOfLeafs(BinarySearchTree<T> tree){ 76 return numberOfLeafs(tree.root); 77 } 78 //计算树中叶结点的个数 79 private int numberOfLeafs(BinaryNode<T> root){ 80 int nodes = 0; 81 if(root == null) 82 return 0; 83 else if(root.left == null && root.right == null) 84 return 1; 85 else 86 nodes = numberOfLeafs(root.left) + numberOfLeafs(root.right); 87 return nodes; 88 } 89 90 public int numberOfFulls(BinarySearchTree<T> tree){ 91 return numberOfFulls(tree.root); 92 // return numberOfLeafs(tree.root) > 0 ? numberOfLeafs(tree.root)-1 : 0;// n(2)=n(0)-1 93 } 94 //计算树中度为2的节点的个数--满节点的个数 95 private int numberOfFulls(BinaryNode<T> root){ 96 int nodes = 0; 97 if(root == null) 98 return 0; 99 else if(root.left == null && root.right == null) 100 return 0; 101 else if(root.left == null && root.right != null) 102 nodes = numberOfFulls(root.right); 103 else if(root.left != null && root.right == null) 104 nodes = numberOfFulls(root.left); 105 else 106 nodes = 1 + numberOfFulls(root.left) + numberOfFulls(root.right); 107 return nodes; 108 } 109 110 111 public static void main(String[] args) { 112 BinarySearchTree<Integer> intTree = new BinarySearchTree<>(); 113 double averHeight = intTree.averageHeigth(1, 6, intTree); 114 System.out.println("averageheight = " + averHeight); 115 116 /*-----------All Nodes-----------------*/ 117 int totalNodes = intTree.numberOfNodes(intTree); 118 System.out.println("total nodes: " + totalNodes); 119 120 /*-----------Leaf Nodes-----------------*/ 121 int leafNodes = intTree.numberOfLeafs(intTree); 122 System.out.println("leaf nodes: " + leafNodes); 123 124 /*-----------Full Nodes-----------------*/ 125 int fullNodes = intTree.numberOfFulls(intTree); 126 System.out.println("full nodes: " + fullNodes); 127 } 128 129 public double averageHeigth(int tree_numbers, int node_numbers, BinarySearchTree<Integer> tree) { 130 int tree_height, totalHeight = 0; 131 for(int i = 1; i <= tree_numbers; i++){ 132 int[] randomNumbers = C2_2_8.algorithm3(node_numbers); 133 //build tree 134 for(int j = 0; j < node_numbers; j++) 135 { 136 tree.insert(randomNumbers[j]); 137 System.out.print(randomNumbers[j] + " "); 138 } 139 System.out.println(); 140 tree_height = tree.height(); 141 System.out.println("height:" + tree_height); 142 143 totalHeight += tree_height; 144 // tree.root = null;//for building next tree 145 } 146 return (double)totalHeight / tree_numbers; 147 } 148 }