对于答案来说,一定是
- 前 i-1 个字符和 t的前 i 个一样,然后第 i 个字符比 t的 大 (iin [1,m])
- 前缀为t,然后长度比t长
对于第一种情况,枚举这个 i ,然后找最小的 p 可以使得从(s[1sim p]) 中产生(t_1t_2cdots t_{i-1}) ,然后在(s[p+1,n])中找最左边的比(t[i]) 大的字符,假如 找到了(s[pos]),那么后面的(s[pos+1,n]) 都可以加到答案后面(因为(s[pos] > t[i]) 已经保证答案大于t了)
对于第二种,根据求第一种的方法,不难求出
如何找最小的p?预处理一个(sf[i][c]) 数组,表示(s[i]) 后面第一个字符(c)在哪里即可
如何找pos? 也是用预处理的数组循环最多26次即可
复杂度(O(n*26))
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
int sf[N][26];
char s[N],t[N];
int n,m;
int main(){
scanf("%d%d",&n,&m);
scanf("%s%s",s+1,t+1);
for(int i=0;i<26;i++)sf[n][i] = n+1;
for(int i=n-1;i>=0;i--){
memcpy(sf[i],sf[i+1],sizeof sf[i]);
sf[i][s[i+1]-'a'] = i+1;
}
int p = 0,res = -1;
for(int i=1;i<=m;i++){
int pos = n+1;
for(int j=t[i]-'a'+1;j<26;j++){
pos = min(pos,sf[p][j]);//找到最近的那个s[pos] > t[i];
}
if(pos != n+1)
res = max(res,i+n-pos);//(n-pos)为后面还可以加的长度
p = sf[p][t[i]-'a'];
if(p == n+1)break;
}
if(p < n)
res = max(res,n-p+m);
printf("%d
",res);
return 0;
}