• hdu1028 Ignatius and the Princess III(递归、DP)


    Ignatius and the Princess III

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 25805    Accepted Submission(s): 17839


    Problem Description
    "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

    "The second problem is, given an positive integer N, we define an equation like this:
      N=a[1]+a[2]+a[3]+...+a[m];
      a[i]>0,1<=m<=N;
    My question is how many different equations you can find for a given N.
    For example, assume N is 4, we can find:
      4 = 4;
      4 = 3 + 1;
      4 = 2 + 2;
      4 = 2 + 1 + 1;
      4 = 1 + 1 + 1 + 1;
    so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
     
    Input
    The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
     
    Output
    For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
     
    Sample Input
    4
    10
    20
     
    Sample Output
    5
    42
    627
     
     
    递归
    #include<stdio.h>
    #include<string.h>
    const int MAXN=130;
    int dp[MAXN][MAXN];//用数组记录计算结果,节约时间
    //dp[i][j]表示将i分成j部分的和等于i的方法数
    int calc(int n,int m)
    {
        if(dp[n][m]!=-1) 
            return dp[n][m];
        if(n<1||m<1)
            return dp[n][m]=0;
        if(n==1||m==1) 
            return dp[n][m]=1;
        if(n<m) 
            return dp[n][m]=calc(n,n);
        if(n==m) 
            return dp[n][m]=calc(n,m-1)+1;
        return dp[n][m]=calc(n,m-1)+calc(n-m,m);
        
    }     
    int main()
    {
        int n;
        memset(dp,-1,sizeof(dp));
        while(scanf("%d",&n)!=EOF)
          printf("%d
    ",calc(n,n));
        return 0;
    }

    DP

    #include<iostream>
    using namespace std;
    int main()
    {
        int n;
        while (cin >> n)
        {
            int dp[121] = { 0 };
            dp[0] = 1;
            for (int i = 1; i <= n; i++)//分成几部分
            {
                for (int j = i; j <= n; j++)//每一部分先放1个有dp[j]种放法,剩下的j-i个随便放有dp[j-i]种放法
                {
                    dp[j] = dp[j] + dp[j - i];//不断更新
                }
            }
            cout << dp[n] << endl;
        }
    }
  • 相关阅读:
    UESTC 913 握手 Havel定理+优先队列
    UESTC 912 树上的距离 --LCA+RMQ+树状数组
    UESTC 901 方老师抢银行 --Tarjan求强连通分量
    UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数
    UESTC 899 方老师和农场 --双连通分量的构造
    UESTC 898 方老师和缘分 --二分图匹配+强连通分量
    ACdream OJ 1099 瑶瑶的第K大 --分治+IO优化
    Codeforces Zepto Code Rush 2014 -C
    Floyd判最小环算法模板
    POJ 1364 King --差分约束第一题
  • 原文地址:https://www.cnblogs.com/-citywall123/p/9511427.html
Copyright © 2020-2023  润新知